Aliases: C33⋊1M4(2), D6.(C32⋊C4), C32⋊2C8⋊3S3, C33⋊4C8⋊6C2, C3⋊Dic3.25D6, C33⋊5C4.2C4, C32⋊9(C8⋊S3), C3⋊1(C62.C4), (S3×C3×C6).2C4, C2.6(S3×C32⋊C4), C6.6(C2×C32⋊C4), (C3×C6).31(C4×S3), (C3×C32⋊2C8)⋊6C2, (S3×C3⋊Dic3).4C2, (C32×C6).6(C2×C4), (C3×C3⋊Dic3).28C22, SmallGroup(432,572)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C32×C6 — C3×C3⋊Dic3 — S3×C3⋊Dic3 — C33⋊M4(2) |
Generators and relations for C33⋊M4(2)
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=ab-1, ae=ea, bc=cb, dbd-1=a-1b-1, be=eb, dcd-1=ece=c-1, ede=d5 >
Subgroups: 544 in 84 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, D6, C2×C6, M4(2), C3×S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×Dic3, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, S3×C6, C62, C8⋊S3, S3×C32, C32×C6, C32⋊2C8, C32⋊2C8, S3×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C33⋊5C4, S3×C3×C6, C62.C4, C3×C32⋊2C8, C33⋊4C8, S3×C3⋊Dic3, C33⋊M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, M4(2), C4×S3, C32⋊C4, C8⋊S3, C2×C32⋊C4, C62.C4, S3×C32⋊C4, C33⋊M4(2)
Character table of C33⋊M4(2)
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 6 | 2 | 4 | 4 | 8 | 8 | 9 | 9 | 54 | 2 | 4 | 4 | 8 | 8 | 12 | 12 | 12 | 12 | 18 | 18 | 54 | 54 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | -i | i | -i | -1 | -1 | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | i | -i | i | -1 | -1 | -i | i | i | -i | linear of order 4 |
ρ9 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | -2i | 2i | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ12 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 1 | 1 | i | -i | -i | i | complex lifted from C4×S3 |
ρ13 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | -2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 1 | 1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ14 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2i | -2i | 0 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ15 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 2i | -2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | complex lifted from C8⋊S3 |
ρ16 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | -2i | 2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | complex lifted from C8⋊S3 |
ρ17 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | 2i | -2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | complex lifted from C8⋊S3 |
ρ18 | 2 | -2 | 0 | -1 | 2 | 2 | -1 | -1 | -2i | 2i | 0 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | complex lifted from C8⋊S3 |
ρ19 | 4 | 4 | -4 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 4 | -2 | 1 | 1 | -2 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ20 | 4 | 4 | 4 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 4 | 1 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ21 | 4 | 4 | 4 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 4 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ22 | 4 | 4 | -4 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 4 | 1 | -2 | -2 | 1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ23 | 4 | -4 | 0 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | -4 | 2 | -1 | -1 | 2 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ24 | 4 | -4 | 0 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | -4 | -1 | 2 | 2 | -1 | 0 | 0 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ25 | 4 | -4 | 0 | 4 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | -4 | 2 | -1 | -1 | 2 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ26 | 4 | -4 | 0 | 4 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | -4 | -1 | 2 | 2 | -1 | 0 | 0 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C62.C4, Schur index 2 |
ρ27 | 8 | 8 | 0 | -4 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | -4 | -4 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×C32⋊C4 |
ρ28 | 8 | 8 | 0 | -4 | -4 | 2 | -1 | 2 | 0 | 0 | 0 | -4 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×C32⋊C4 |
ρ29 | 8 | -8 | 0 | -4 | -4 | 2 | -1 | 2 | 0 | 0 | 0 | 4 | -2 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ30 | 8 | -8 | 0 | -4 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | 4 | 4 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 38 45)(2 39 46)(3 47 40)(4 48 33)(5 34 41)(6 35 42)(7 43 36)(8 44 37)(9 28 23)(10 24 29)(11 17 30)(12 31 18)(13 32 19)(14 20 25)(15 21 26)(16 27 22)
(2 46 39)(4 33 48)(6 42 35)(8 37 44)(9 23 28)(11 30 17)(13 19 32)(15 26 21)
(1 45 38)(2 39 46)(3 47 40)(4 33 48)(5 41 34)(6 35 42)(7 43 36)(8 37 44)(9 23 28)(10 29 24)(11 17 30)(12 31 18)(13 19 32)(14 25 20)(15 21 26)(16 27 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 22)(2 19)(3 24)(4 21)(5 18)(6 23)(7 20)(8 17)(9 35)(10 40)(11 37)(12 34)(13 39)(14 36)(15 33)(16 38)(25 43)(26 48)(27 45)(28 42)(29 47)(30 44)(31 41)(32 46)
G:=sub<Sym(48)| (1,38,45)(2,39,46)(3,47,40)(4,48,33)(5,34,41)(6,35,42)(7,43,36)(8,44,37)(9,28,23)(10,24,29)(11,17,30)(12,31,18)(13,32,19)(14,20,25)(15,21,26)(16,27,22), (2,46,39)(4,33,48)(6,42,35)(8,37,44)(9,23,28)(11,30,17)(13,19,32)(15,26,21), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46)>;
G:=Group( (1,38,45)(2,39,46)(3,47,40)(4,48,33)(5,34,41)(6,35,42)(7,43,36)(8,44,37)(9,28,23)(10,24,29)(11,17,30)(12,31,18)(13,32,19)(14,20,25)(15,21,26)(16,27,22), (2,46,39)(4,33,48)(6,42,35)(8,37,44)(9,23,28)(11,30,17)(13,19,32)(15,26,21), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46) );
G=PermutationGroup([[(1,38,45),(2,39,46),(3,47,40),(4,48,33),(5,34,41),(6,35,42),(7,43,36),(8,44,37),(9,28,23),(10,24,29),(11,17,30),(12,31,18),(13,32,19),(14,20,25),(15,21,26),(16,27,22)], [(2,46,39),(4,33,48),(6,42,35),(8,37,44),(9,23,28),(11,30,17),(13,19,32),(15,26,21)], [(1,45,38),(2,39,46),(3,47,40),(4,33,48),(5,41,34),(6,35,42),(7,43,36),(8,37,44),(9,23,28),(10,29,24),(11,17,30),(12,31,18),(13,19,32),(14,25,20),(15,21,26),(16,27,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,22),(2,19),(3,24),(4,21),(5,18),(6,23),(7,20),(8,17),(9,35),(10,40),(11,37),(12,34),(13,39),(14,36),(15,33),(16,38),(25,43),(26,48),(27,45),(28,42),(29,47),(30,44),(31,41),(32,46)]])
Matrix representation of C33⋊M4(2) ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 72 | 0 |
0 | 0 | 0 | 72 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
25 | 7 | 0 | 0 | 0 | 0 |
32 | 48 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
29 | 25 | 0 | 0 | 0 | 0 |
54 | 44 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,1,0,0,0,0,72,0,72,0,0,72,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,72,1,0,0,72,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[25,32,0,0,0,0,7,48,0,0,0,0,0,0,72,0,1,0,0,0,0,0,72,0,0,0,0,1,0,1,0,0,0,0,0,1],[29,54,0,0,0,0,25,44,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C33⋊M4(2) in GAP, Magma, Sage, TeX
C_3^3\rtimes M_4(2)
% in TeX
G:=Group("C3^3:M4(2)");
// GroupNames label
G:=SmallGroup(432,572);
// by ID
G=gap.SmallGroup(432,572);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,141,36,58,1411,298,1356,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,a*e=e*a,b*c=c*b,d*b*d^-1=a^-1*b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^5>;
// generators/relations
Export