Copied to
clipboard

G = C33⋊M4(2)  order 432 = 24·33

1st semidirect product of C33 and M4(2) acting via M4(2)/C2=C2×C4

metabelian, soluble, monomial

Aliases: C331M4(2), D6.(C32⋊C4), C322C83S3, C334C86C2, C3⋊Dic3.25D6, C335C4.2C4, C329(C8⋊S3), C31(C62.C4), (S3×C3×C6).2C4, C2.6(S3×C32⋊C4), C6.6(C2×C32⋊C4), (C3×C6).31(C4×S3), (C3×C322C8)⋊6C2, (S3×C3⋊Dic3).4C2, (C32×C6).6(C2×C4), (C3×C3⋊Dic3).28C22, SmallGroup(432,572)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C33⋊M4(2)
C1C3C33C32×C6C3×C3⋊Dic3S3×C3⋊Dic3 — C33⋊M4(2)
C33C32×C6 — C33⋊M4(2)
C1C2

Generators and relations for C33⋊M4(2)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=ab-1, ae=ea, bc=cb, dbd-1=a-1b-1, be=eb, dcd-1=ece=c-1, ede=d5 >

Subgroups: 544 in 84 conjugacy classes, 18 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, D6, C2×C6, M4(2), C3×S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×Dic3, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, S3×C6, C62, C8⋊S3, S3×C32, C32×C6, C322C8, C322C8, S3×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C335C4, S3×C3×C6, C62.C4, C3×C322C8, C334C8, S3×C3⋊Dic3, C33⋊M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, M4(2), C4×S3, C32⋊C4, C8⋊S3, C2×C32⋊C4, C62.C4, S3×C32⋊C4, C33⋊M4(2)

Character table of C33⋊M4(2)

 class 12A2B3A3B3C3D3E4A4B4C6A6B6C6D6E6F6G6H6I8A8B8C8D12A12B24A24B24C24D
 size 116244889954244881212121218185454181818181818
ρ1111111111111111111111111111111    trivial
ρ211-11111111-111111-1-1-1-111-1-1111111    linear of order 2
ρ311111111111111111111-1-1-1-111-1-1-1-1    linear of order 2
ρ411-11111111-111111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ511111111-1-1-1111111111i-i-ii-1-1i-i-ii    linear of order 4
ρ611-111111-1-1111111-1-1-1-1i-ii-i-1-1i-i-ii    linear of order 4
ρ711111111-1-1-1111111111-iii-i-1-1-iii-i    linear of order 4
ρ811-111111-1-1111111-1-1-1-1-ii-ii-1-1-iii-i    linear of order 4
ρ9220-122-1-1220-122-1-100002200-1-1-1-1-1-1    orthogonal lifted from S3
ρ10220-122-1-1220-122-1-10000-2-200-1-11111    orthogonal lifted from D6
ρ112-2022222-2i2i0-2-2-2-2-2000000002i-2i0000    complex lifted from M4(2)
ρ12220-122-1-1-2-20-122-1-10000-2i2i0011i-i-ii    complex lifted from C4×S3
ρ13220-122-1-1-2-20-122-1-100002i-2i0011-iii-i    complex lifted from C4×S3
ρ142-20222222i-2i0-2-2-2-2-200000000-2i2i0000    complex lifted from M4(2)
ρ152-20-122-1-12i-2i01-2-21100000000i-i83ζ3838ζ3885ζ38587ζ387    complex lifted from C8⋊S3
ρ162-20-122-1-1-2i2i01-2-21100000000-ii85ζ38587ζ38783ζ3838ζ38    complex lifted from C8⋊S3
ρ172-20-122-1-12i-2i01-2-21100000000i-i87ζ38785ζ3858ζ3883ζ383    complex lifted from C8⋊S3
ρ182-20-122-1-1-2i2i01-2-21100000000-ii8ζ3883ζ38387ζ38785ζ385    complex lifted from C8⋊S3
ρ1944-441-2-210004-211-2-1-1220000000000    orthogonal lifted from C2×C32⋊C4
ρ204444-211-200041-2-21-2-2110000000000    orthogonal lifted from C32⋊C4
ρ2144441-2-210004-211-211-2-20000000000    orthogonal lifted from C32⋊C4
ρ2244-44-211-200041-2-2122-1-10000000000    orthogonal lifted from C2×C32⋊C4
ρ234-4041-2-21000-42-1-12-33000000000000    symplectic lifted from C62.C4, Schur index 2
ρ244-404-211-2000-4-122-1003-30000000000    symplectic lifted from C62.C4, Schur index 2
ρ254-4041-2-21000-42-1-123-3000000000000    symplectic lifted from C62.C4, Schur index 2
ρ264-404-211-2000-4-122-100-330000000000    symplectic lifted from C62.C4, Schur index 2
ρ27880-42-42-1000-4-42-1200000000000000    orthogonal lifted from S3×C32⋊C4
ρ28880-4-42-12000-42-42-100000000000000    orthogonal lifted from S3×C32⋊C4
ρ298-80-4-42-120004-24-2100000000000000    symplectic faithful, Schur index 2
ρ308-80-42-42-100044-21-200000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C33⋊M4(2)
On 48 points
Generators in S48
(1 38 45)(2 39 46)(3 47 40)(4 48 33)(5 34 41)(6 35 42)(7 43 36)(8 44 37)(9 28 23)(10 24 29)(11 17 30)(12 31 18)(13 32 19)(14 20 25)(15 21 26)(16 27 22)
(2 46 39)(4 33 48)(6 42 35)(8 37 44)(9 23 28)(11 30 17)(13 19 32)(15 26 21)
(1 45 38)(2 39 46)(3 47 40)(4 33 48)(5 41 34)(6 35 42)(7 43 36)(8 37 44)(9 23 28)(10 29 24)(11 17 30)(12 31 18)(13 19 32)(14 25 20)(15 21 26)(16 27 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 22)(2 19)(3 24)(4 21)(5 18)(6 23)(7 20)(8 17)(9 35)(10 40)(11 37)(12 34)(13 39)(14 36)(15 33)(16 38)(25 43)(26 48)(27 45)(28 42)(29 47)(30 44)(31 41)(32 46)

G:=sub<Sym(48)| (1,38,45)(2,39,46)(3,47,40)(4,48,33)(5,34,41)(6,35,42)(7,43,36)(8,44,37)(9,28,23)(10,24,29)(11,17,30)(12,31,18)(13,32,19)(14,20,25)(15,21,26)(16,27,22), (2,46,39)(4,33,48)(6,42,35)(8,37,44)(9,23,28)(11,30,17)(13,19,32)(15,26,21), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46)>;

G:=Group( (1,38,45)(2,39,46)(3,47,40)(4,48,33)(5,34,41)(6,35,42)(7,43,36)(8,44,37)(9,28,23)(10,24,29)(11,17,30)(12,31,18)(13,32,19)(14,20,25)(15,21,26)(16,27,22), (2,46,39)(4,33,48)(6,42,35)(8,37,44)(9,23,28)(11,30,17)(13,19,32)(15,26,21), (1,45,38)(2,39,46)(3,47,40)(4,33,48)(5,41,34)(6,35,42)(7,43,36)(8,37,44)(9,23,28)(10,29,24)(11,17,30)(12,31,18)(13,19,32)(14,25,20)(15,21,26)(16,27,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,35)(10,40)(11,37)(12,34)(13,39)(14,36)(15,33)(16,38)(25,43)(26,48)(27,45)(28,42)(29,47)(30,44)(31,41)(32,46) );

G=PermutationGroup([[(1,38,45),(2,39,46),(3,47,40),(4,48,33),(5,34,41),(6,35,42),(7,43,36),(8,44,37),(9,28,23),(10,24,29),(11,17,30),(12,31,18),(13,32,19),(14,20,25),(15,21,26),(16,27,22)], [(2,46,39),(4,33,48),(6,42,35),(8,37,44),(9,23,28),(11,30,17),(13,19,32),(15,26,21)], [(1,45,38),(2,39,46),(3,47,40),(4,33,48),(5,41,34),(6,35,42),(7,43,36),(8,37,44),(9,23,28),(10,29,24),(11,17,30),(12,31,18),(13,19,32),(14,25,20),(15,21,26),(16,27,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,22),(2,19),(3,24),(4,21),(5,18),(6,23),(7,20),(8,17),(9,35),(10,40),(11,37),(12,34),(13,39),(14,36),(15,33),(16,38),(25,43),(26,48),(27,45),(28,42),(29,47),(30,44),(31,41),(32,46)]])

Matrix representation of C33⋊M4(2) in GL6(𝔽73)

100000
010000
00720720
0007201
001000
0007200
,
100000
010000
0017211
001010
0072100
001000
,
0720000
1720000
001000
000100
000010
000001
,
2570000
32480000
0072000
000010
0017200
000011
,
29250000
54440000
001000
000100
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,1,0,0,0,0,72,0,72,0,0,72,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,72,1,0,0,72,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[25,32,0,0,0,0,7,48,0,0,0,0,0,0,72,0,1,0,0,0,0,0,72,0,0,0,0,1,0,1,0,0,0,0,0,1],[29,54,0,0,0,0,25,44,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C33⋊M4(2) in GAP, Magma, Sage, TeX

C_3^3\rtimes M_4(2)
% in TeX

G:=Group("C3^3:M4(2)");
// GroupNames label

G:=SmallGroup(432,572);
// by ID

G=gap.SmallGroup(432,572);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,141,36,58,1411,298,1356,1027,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^-1,a*e=e*a,b*c=c*b,d*b*d^-1=a^-1*b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^5>;
// generators/relations

Export

Character table of C33⋊M4(2) in TeX

׿
×
𝔽